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What is HTAP?

To develop a fuller understanding of intercontinental transport of air
pollution in the Northern Hemisphere, the Executive Body of the
UNECE Convention on Long-range Transboundary Air Pollution
(LRTAP Convention) established the Task Force on Hemispheric
Transport of Air Pollution (TF HTAP) to:

(a) Plan and conduct the technical work necessary to develop a fuller
understanding of the hemispheric transport of air pollution for
consideration in the reviews of protocols to the Convention;

(b) Plan and conduct the technical work necessary to estimate the
hemispheric transport of specific air pollutants for the use in reviews
of protocols to the Convention and prepare technical reviews
thereon for submission to the Steering Body of EMEP;

(c) Carry out such other tasks related to the above work as the
Executive Body may assign to it in the annual work-plan. [See
Annex IV of ECE/EB.AIR/83/Add.1]
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HTAP Experiment Set 3 Event Simulation

»Objectives

Evaluate and intercompare (some of) the models contributing to HTAP with
respects to their capabilities to reproduce the long-range transport of
pollution using the ICARTT data set

» Activities proposed by:
M. Evans, R. Park, I. Bey, S. Turquety, K. Law, E. Real, S Arnold,
A rather Harvard Mafia! ©
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HTAP Experiment Set 3 — time line, 1

Requested simulations

» ES1. A standard simulation for 2004 with specified biomass burning inventory (taken from
Turquety et al., [2007]) and injection height. Model outputs requested over the period from June
to September 2004.

» ES2. A sensitivity simulation with North American anthropogenic emissions reduced by 20%
from March 1st to September 30th 2004.

= ES3. A sensitivity simulation with North American biomass burning emissions reduced by 20%
from March 1st to September 30th 2004 over the region defined in the Turquety et al., files.

= ES4. A sensitivity simulation similar to ES1 with biomass burning emissions restricted to the
boundary layer from May 1st 2004 onward.

Requested diagnostics (monthly mean + 3-hour timeseries)
» Trace gas concentrations

= Aerosol concentrations

= Aerosol optical depths

= Deposition rates

» Chemical tendencies (ozone and CO)

» Emissions

» Meteorogical data (pres, temp, convective mass fluxes)

» Photolysis rates
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 General characterisation of chemical
signatures of different air masses over the
North Atlantic area

« Comparison model outflow characteristics

 Aerosol export (export efficiency of black
carbon aerosols)

* Impact of injection height on long range
transport of biomass burning emissions

 On-route processing of plumes of biomass
burning and anthropogenic origins
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e General characterisation of chemical
signatures of different air masses over the
North Atlantic area

« Comparison model outflow characteristics

 Aerosol export (export efficiency of black
carbon aerosols)

* Impact of injection height on long range
transport of biomass burning emissions

 On-route processing of plumes of biomass
burning and anthropogenic origins

Mat Evans + Isabelle Bey
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ICARTT

We collected a lot of observations during a field campaign.
They are usually get ‘sliced and diced’ by ‘experience’
But can we classify them systematically minimizing the prior assumption?

Can we then use this classification to assess our understanding of the
processes occuring?



Institute for Climate and Atmospheric Science ﬂ

School of Earth and Environment UNIVERSITY OF LEEDS

] 160000 T ] 100000 ] ]
Cluster analysis - ]
allows the B:
partitioning of a data & g 1oer
set into subsets z T o) ]
(clusters), so that the ek ]
data in each subset
100 : 0.01 1
share some common 10 100 1000 10 100 1000
tra | t CO (ppbv O {ppbw)
150 T ! T g 1000
In this case we used ;
* [03] _ 100 - - 00100 |
* log(q) g oo 3
’ EgG:G} S 5ol £ 00010 -
[ ] s
B | 14'
o . . . . 0.0001
from the BAe146 0 100 :g% t bi;nu A0 500 10 - Euub 3 1000
. PP pphv
during ICARTT a a o =
Blomass Lowr leal ouiflawr Lpper laval cutllow Maoist Lower Trop Marine Upper Trop
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Do the clusters tie up with the meteorology (trajectories)?
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Can we use these approaches to test models?

« Are the characteristic air masses (as manifested by the clusters) in
the models the same as those observed?

* Is the composition of the clusters comparable between the models
and between models and observations?

 In which clusters is the model failure most significant? Can we
attribute this failure to a particular model process?
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Within each cluster are the relationships species the same?
Principal components analysis will allow us to investigate this
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 General characterisation of chemical
signatures of different air masses over the
North Atlantic area

« Comparison model outflow characteristics

 Aerosol export (export efficiency of black
carbon aerosols)

* Impact of injection height on long range
transport of biomass burning emissions

 On-route processing of plumes of biomass
burning and anthropogenic origins

Isabelle Bey + Mat Evans
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Objective:
Examine in a quantitative manner the overall impact of plumes on the O,

production on specific regions such as e.g. North Atlantic and intercompare
different models

Methodology:
- Differentiate the “polluted” and “background” environments (e.g. identify
the ensemble of plumes in the 3D fields) using various criteria (e.g. ACO,

ANO,)
- Examine the characteristics (O, tendencies, water vapor, etc.) of the
ensemble of plumes
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Auvray et al., JGR, 2007
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 General characterisation of chemical
signatures of different air masses over the
North Atlantic area

« Comparison model outflow characteristics

 Aerosol export (export efficiency of black
carbon aerosols)

* Impact of injection height on long range
transport of biomass burning emissions

 On-route processing of plumes of biomass
burning and anthropogenic origins

Rojkin Park
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 General characterisation of chemical
signatures of different air masses over the
North Atlantic area

« Comparison model outflow characteristics

 Aerosol export (export efficiency of black
carbon aerosols)

* Impact of injection height on long range
transport of biomass burning emissions

 On-route processing of plumes of biomass
burning and anthropogenic origins

Solene Turquety
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 General characterisation of chemical
signatures of different air masses over the
North Atlantic area

« Comparison model outflow characteristics

 Aerosol export (export efficiency of black
carbon aerosols)

* Impact of injection height on long range
transport of biomass burning emissions

 On-route processing of plumes of biomass
burning and anthropogenic origins

Kathy Law + Steve Arnold
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Some conclusions from the Real et al., ACPD, 2008 paper:

* The Lagrangian simulation reproduces the observed mean concentrations
* The evolution of O; is dominated by chemical phenomena versus mixing
phenomena for CO

= Net O; production during transport of about 4 ppbv/day - 80 % due to PAN
decompositon.

= Aerosols have a strong impact on the reduction of photochemistry (15 % of
net O3 production).

= HNO, concentrations are significantly depleted during transport because of
wet deposition

= HNO, photolysis leads to a sustainable production of NOx, and thus ozone
* This, in turn, leads to OH production (enhanced water vapor) with some
implication for the evolution of the CO concentrations (- 50 ppbv in 5 days)
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Perturbing bimolecular rate coefficients
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- Uncertainties from IUPAC / JPL
- Perturbed using Latin-Hypercube method
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Perturbing bimolecular rate coefficients

0.08 T 0.08 [T
0.06:— | 0.06|
EU-U“E Eo.m
0.02:- 0.02}
0.00L. .. 0.00 Ll 2.

0.3 04 05 06 0.7
Mean [OH] / molec cm™

-2




Institute for Climate and Atmospheric Science ﬂ

School of Earth and Environment UNIVERSITY OF LEED

Perturbing initial concentrations
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Impact on trajectory AO, for 10% perturbation to initial concs
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Impact on trajectory AO, for 10% perturbation to initial concs
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- Which rate constants and other model parameters
produce largest sensitivities?

 Which rate constants are a priority for further
investigation?

 Which in-situ obs are key to understanding chemical
evolution of different plumes (biomass, anthop)?

Which instruments are a priority for improvement?
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The HTAP Experiment Set 3 should offer
unique way of consistently comparing
observations with a wide range of models.

Very useful resource to the community
But we need to know to know when the

observations are telling us something useful
and when they are not
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» Proposal uploaded on the HTAP wiki web page end of February
= Model outputs are getting uploaded (or will be in the next weeks)
= Model outputs likely to be accepted until end of July
» First results should be available in this coming fall

» Proposed analyses
= General characterisation of air masses over the North Atlantic area
= On-route processing of plumes
— case studies
— “ensemble” of plumes
= Aerosol export (export efficiency of black carbon aerosols)
= Impact of injection height on of biomass burning emissions

» What is next?
= Others analyses?
= TP simulations in support of ES?

= With this set of simulations, it will be difficult to determine why the models
may differ => Try to link with ACC ? (already link to GEMS).
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The HTAP
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North American biomass burning AOD
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North American biomass burning AOD
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North American biomass burning AOD
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North American anthropogenic AOD North American Biomass burning AOD
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North American anthropogenic AOD
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Main conclusions from the Real et al., JGR [2007a] paper:

- The Lagrangian simulation reproduces the observed mean concentration
and evolution of correlations

- The evolution of O; is dominated by chemical phenomena versus mixing
phenomena for CO

- Net O5 production during transport of about 4 ppbv/day - 80 % due to PAN
decompositon.

- Aerosols have a strong impact on the reduction of photochemistry (15 %6 of
net O; production).

Some processes we can test in the model:
- Chemical evolution

- Mixing

- Influence on receptor regions

Some further considerations:

-This Alaskan anthropogenic plume is a ““good candidate” to examine
intercontinental transport of O; because of the different processes occurring
In route

- Transport of both ozone pollution and aerosols can be addressed

- This plume significantly affects Europe, both in terms of ozone and aerosols

- “Biomass burning” pollution : Is that still relevant for HTAP?
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- The Lagrangian simulation reproduces the observed mean concentrations

- HNO; concentrations are significantly depleted during transport because of
wet deposition

- HNO; photolysis leads to a sustainable production of NOx, and thus ozone,
which, in turn, leads to OH production (enhanced water vapor) with some
implication for the evolution of the CO concentrations (-50 ppbv in 5 days)

Some processes we can test in the model:
- Chemical evolution

- Wet deposition

- Mixing
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